

www.networks.imdea.org

The Effects of Frame Collisions in 802.11-based Mesh Networks

Vincenzo Mancuso Staff Researcher

instituto madrileño de estudios avanzados

Problem

Wireless network utilization is not efficient

- 802.11 networks are designed for 11 to 54 Mbps
 - 108 Mbps with Turbo Mode (use two channels)
- 802.11-based Mesh Networks can hardly reach few Mbps

Why? --- lack of coordination (no scheduling)

- Uncoordinated nodes generate many collisions
 - Unresponsive traffic flows (UDP) do not slow down
 - Packet dropping
 - Reactive traffic flows (TCP) slow down unfairly
 - Some nodes have better performance than others

instituto madrileño de estudios avanzados

Who should transmit?

- A receiver can listen to multiple transmitters...
 - ... but not in parallel!
- Collisions happen if wireless nodes are not able to coordinate
- CSMA random access (802.11):
 - A node listens to the channel
 - If the channel is idle, the node transmits with some probability p
- What if two nodes are not in range?
 - Hidden nodes
 - E.g., there is a problem if hidden nodes want to transmit towards the same destination

instituto madrileño de estudios avanzados

12/13/2010

© Institute IMDEA Networks

Who should transmit?

- Many works focused on modeling the optimal value for p
 - Graph-theory
 - Markov chains
 - ...
- Many works on experiments are available
 - Simulations
 - Real testbeds
- Results strongly depends on
 - Topology
 - Traffic matrix
 - Protocols (MAC and TRANSPORT)

12/13/2010

Non-fully backlogged TCP flows

What if collisions involve uncorrelated traffic? (e.g., data flows and control flows)

- Small control packets collide with big data packets
- This way, overhead (OH) can cause a throughput reduction witch is NOT proportional to the OH traffic!

instituto madrileño de estudios avanzados

12/13/2010

www.networks.imdea.org

Overhead Effects

- Experiment on a 802.11b operational mesh network
- Overhead of 80 kbps (approx. 10 kbps/node)
- Vastly different performance with and without overhead
 - 800 to 1800 kbps degradation
 - 10-20 times injected overhead
 - Heterogeneity of effect mainly due to hidden node presence (*capture effect* and *autorate fallback*)

Understanding spatial bias

Compounding effect of many factors:

- OH reduces the capacity in a heterogeneous manner
 - Basically depends on hidden nodes and capture effect
- Considering the remaining capacity, MAC and TCP can not cooperate very well...
 - (i) The collision avoidance in medium access protocol induces bistability in which pairs of nodes symmetrically alternate in capturing system resources
 - (ii) The congestion control in transport protocol induces asymmetry in the time spent in each state and favors the one-hop flow
 - (iii) High penalty due to cross-layer effects in terms of loss, delay, and consequently, throughput, in order to re-capture system resources

instituto madrileño de estudios avanzados

(i) 802.11-MAC bi-stability (symmetric effect)

Due to lack of coordination:

- Bi-stable state: either A transmits and GW is in high backoff, or GW transmits and A is in high backoff
- Success state and fail state alternate

(ii) Asymmetry induced by TCP

Two nested transport loops and sliding windows

- Asymmetric impact of multipacket capture
- DATA (A, B) burst: ٠ DATA the burst size is limited by: GW Α В TCP window size (GW, B) burst: ٠ DATA self-sustaining loop: Β GW Α TCP ACK are generated ACK

- Node GW incurs small penalty: short duration of fail state but long packet bursts
- Node A incurs high penalty: long duration of fail state and low offered load, high backoff & multiple TCP timeouts

Does spatial biasing trigger other mechanisms?

Three properties of a mesh:

1- Distributed Approximate Priority:

One-hop nodes have Access Priority

2- Congestion Indication:

Any congested link indicates congestion around the gateway

- gateway airtime must be saturated
- gateway congested \rightarrow all flows experience congestion
- 3- *Control by proxy*: Enforcing free airtime in the gateway neighborhood gives multi-hop nodes transmission opportunities
 - one-hop controls multi-hop
 - also spatial reuse enhanced

Flow 1 Flow 1 Flow 3 D Flow M E e congestion

Yours

have

Mine

Counter-bias policy

- All nodes that are directly connected to the gateway should decrease their access probability p
- E.g.: increase the contention window
 - Simple to implement- no overhead or message exchange between nodes
 - Compliant with IEEE 802.11e EDCA
- Or use rate limiting

Rate limiting at one-hop?

Idea: One-hop gives, two-hop takes (*not 1:1*) \Rightarrow Based on the objective, find a working point

www.networks.imdea.org

- Elastic rate limit operates a gateway airtime partitioning
 - Guaranteed one-hop bandwidth
 - Multi-hop bandwidth
 - Unused bandwidth

How much of the unutilized bandwidth should be reallocated?

- If ALL is reallocated to one-hop nodes ⇒
 No way for multi-hop nodes to rejoin/get the bandwidth back
 - Causes collisions
 - Severe Throughput Imbalance
- If **ZERO** is reallocated to one-hop nodes \Rightarrow Static
 - Underutilization

Idea: make room for **signaling** from multi-hop nodes: just leave a small bandwidth reserved for disadvantaged nodes (a small **gap**): $B_D \leq \gamma U_{max}$ ($B_D < < U_{max}$)

GAP

Must leave free air-time at the gateway to let multi-hop nodes signal their demands

- Objectives
 - 1. Ensure minimum rates that would be guaranteed under saturation load conditions
 - 2. Fairly share unused resources among all competing nodes
- Constraints
 - 1. Disadvantaged-flow Signaling Bandwidth $B_D \le \gamma U_{max}$
 - Aggregate
 - 2. Minimum Guaranteed One-hop Rate (1-γ)U_{max}
 - Per-node (or aggregate)

Using the GAP

- Given that
 - *U_{max}* is the maximum GW utilization (constant)
 - B_D is reserved to multi-hop traffic (signaling or data)
- Then only multi-hop traffic can drive the GW utilization beyond U_{max} - B_D
- Thus, one-hop nodes can $\frac{detect}{detect}$ multi-hop traffic by $\frac{observing}{observing}$ a GW utilization exceeding U_{max} - B_D
- E.g., each one-hop node estimates the GW utilization U(t) and uses AIMD to adjust its rate limiting
 - AIMD based on the aggregate one-hop load U(t) and the threshold U_{max} - B_D

if U(t) < U_{max}-B_D Increase rate limit *additively*

else

Decrease rate limit *multiplicatively*

Analytical Model

Rate limiting controlled system

Theorem : The equilibrium points of the proposed rate control framework are stable

Corollary: Perturbations of the equilibrium points of the system are exponentially decaying with time with constant that is based on the equilibrium point

A fluid simulation of the fluid model

ra

B

r_f

Rules of the game

- Time is slotted
- **GW** can sink at most U_{max} units/s
- A can push to B only if B and C are idle (*strict priority*)
- Rate limiting at **B** and **C** (*elastic*)
- **B** + **C** aim at not exceeding
 - Umax -GAP units/s

- B and C estimate the load at each slot (*with noise*)
- B's (C's) estimate is allowed to exceed U_{max}-GAP only if B (C) is below its guaranteed rate
- **B** and **C** adapt their rate limit at the beginning of the slot
 - Increase or decrease, unless the *minimum guaranteed bandwidth* is reached (→ static default)

r_b≤ rl

GW

The rate limit **r** is tuned via an AIMD mechanism

How much GAP?

GAP is robust to noise Low-pass filtered results

Is GAP better than scheduling?!

- In a distributed and low-overhead wireless scenario
 - *U(t)* estimates are prone to uncertainty
 - Distributed *U(t)* estimation is not synchronous
 - Centralized U(t) estimation can be delivered in different time instants to different one-hop nodes
 - → distributed scheduling strategies cannot converge under these assumptions
 - →V. Gambiroza, B. Sadeghi, and E. W. Knightly, "End-to-End Performance and Fairness in Multihop Wireless Backhaul Networks," in Proceedings of ACM MOBICOM, 2004
 - Conversely, GAP is robust enough for a distributed implementation and yields fairness

instituto madrileño de estudios avanzados

Practical issues in GAP implementation

- Distributed (One-hop nodes)
 - Local traffic estimations based on traffic overhearing
 - Prone to large estimate errors
- GW-operated
 - The GW counts the one-hop node traffic
 - Better quality estimate
 - AIMD triggered by GW commands
 - One bit only is needed (increase/decrease AIMD command)
 - Per-node commands
 - Use ACKs to convey commands to each one-hop node
 - Per-aggregate commands
 - Use ACKs or other control messages, e.g., BEACONS to transmit undifferentiated commands
- One-hop good also for UDP upstream
 - UDP downstream is not an issue

NO PACKET OVERHEAD

Conclusions

- One-hop rate limiting is enough to
 - Drastically reduce collisions
 - Avoid multi-hop starvation
 - Enable fairness
 - Control network throughput
- Elastic rate limiting is needed to better use the available resources
 - GAP protocol
- GAP performs better than scheduling
 - Robust in non-ideal scenarios
- GAP is easy to implement
 - In principle, just include an extra bit in the beacons

instituto madrileño de estudios avanzados

BACKUP

instituto madrileño de estudios avanzados

12/13/2010

© Institute IMDEA Networks

GŴ

Experimental Validation

RTS/CTS Enabled

GAP is robust to noise (1)

GAP and fairness

Simulation (NS2)

GAP vs. IFA (Inter-TAP Fairness Algorithm - scheduled access)

8-branch tree

GAP reaches similar or better performances with no need of signaling message exchange