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Problem
Wireless network utilization is not efficient 
• 802.11 networks are designed for 11 to 54 Mbps

– 108 Mbps with Turbo Mode (use two channels)
• 802.11-based Mesh Networks can hardly reach few Mbps

Why? --- lack of coordination (no scheduling)
• Uncoordinated nodes generate many collisions

– Unresponsive traffic flows (UDP) do not slow down
• Packet dropping

– Reactive traffic flows (TCP) slow down unfairly
• Some nodes have better performance than others
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Who should transmit?
• A receiver can listen to multiple 

transmitters…
– … but not in parallel!

• Collisions happen if wireless nodes 
are not able to coordinate

• CSMA random access (802.11):
– A node listens to the channel
– If the channel is idle, the node transmits with some 

probability p

• What if two nodes are not in range?
– Hidden nodes 
– E.g., there is a problem if hidden nodes want to 

transmit towards the same destination 
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Hidden nodes



Who should transmit?
• Many works focused on modeling the 

optimal value for p
– Graph-theory
– Markov chains
– …

• Many works on experiments are 
available
– Simulations
– Real testbeds

• Results strongly depends on 
– Topology
– Traffic matrix
– Protocols (MAC and TRANSPORT)
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Hidden nodes
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TCP Starvation in 802.11-based mesh networks!!!!

Is there any real problem?



Non-fully backlogged TCP flows
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Aggregate one-hop load ≥ GW capacity
⇒Severe Throughput Imbalance

Location matters! 
One-hop nodes have almost strict priority
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What if collisions involve uncorrelated traffic?
(e.g., data flows and control flows)

• Small control packets collide with 
big data packets

• This way, overhead (OH) can cause 
a throughput reduction witch is 
NOT proportional to the OH traffic!
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Overhead Effects
• Experiment on a 802.11b 

operational mesh network
• Overhead of 80 kbps (approx. 

10 kbps/node)
• Vastly different performance 

with and without overhead
– 800 to 1800 kbps degradation
– 10-20 times injected 

overhead
– Heterogeneity of effect mainly 

due to hidden node presence 
(capture effect and autorate
fallback)

TFA network,
Houston, TX



Understanding spatial bias
Compounding effect of many factors:
• OH reduces the capacity in a heterogeneous manner

– Basically depends on hidden nodes and capture effect
• Considering the remaining capacity, MAC and TCP can not 

cooperate very well… 
– (i) The collision avoidance in medium access protocol induces bi-

stability in which pairs of nodes symmetrically alternate in 
capturing system resources

– (ii) The congestion control in transport protocol induces 
asymmetry in the time spent in each state and favors the one-hop 
flow

– (iii) High penalty due to cross-layer effects in terms of loss, delay, 
and consequently, throughput, in order to re-capture system 
resources



(i) 802.11-MAC bi-stability (symmetric effect)

Due to lack of coordination: 
• Bi-stable state: either A transmits and GW is in high backoff, or 

GW transmits and A is in high backoff
• Success state and fail state alternate
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• Two nested transport loops and sliding windows

• Asymmetric impact of multipacket capture

• (A, B) burst: 
the burst size is limited by:
• TCP window size

• (GW, B) burst: 
self-sustaining loop:
• TCP ACK are generated
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(ii) Asymmetry induced by TCP



First time segment is transmitted
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• Node GW incurs small penalty: short duration of fail state but long packet bursts
• Node A incurs high penalty: long duration of fail state and low offered load, 

high backoff & multiple TCP timeouts

(iii) Penalties (asymmetric)

Two-hop node



Does spatial biasing trigger other mechanisms?
Three properties of a mesh:
1- Distributed Approximate Priority: 
One-hop nodes have Access Priority 
2- Congestion Indication:
Any congested link indicates congestion 
around the gateway

– gateway airtime must be saturated
– gateway congested all flows experience congestion

3- Control by proxy: Enforcing free airtime in the gateway 
neighborhood gives multi-hop nodes transmission 
opportunities
– one-hop controls multi-hop
– also spatial reuse enhanced

13



Counter-bias policy

• All nodes that are directly connected to the 
gateway should decrease their access 
probability p

• E.g.: increase the contention window
– Simple to implement- no overhead or message 

exchange between nodes
– Compliant  with IEEE 802.11e EDCA

• Or use rate limiting
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Rate limiting at one-hop?
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Idea: One-hop gives, two-hop takes (not 1:1)
⇒Based on the objective, find a working point
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Working point

• Fairness
– Max-min
– Proportional 
– Time-share

• Utilization
– Max throughput

• QoS
– Reservation
– Delay bound

• Static rate limiting is a good solution for fully 
backlogged scenarios, not for variable traffic
– E.g., static rate limit policies can be inefficient
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Gateway Airtime Partitioning (GAP) 
through Elastic Rate Limiting

• Elastic rate limit operates a gateway airtime partitioning
– Guaranteed one-hop bandwidth
– Multi-hop bandwidth
– Unused bandwidth
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• If ALL is reallocated to one-hop nodes ⇒
No way for multi-hop nodes to rejoin/get the bandwidth back
– Causes collisions
– Severe Throughput Imbalance

• If ZERO is reallocated to one-hop nodes ⇒ Static 
– Underutilization

How much of the unutilized bandwidth 
should be reallocated?

Idea: make room for signaling from multi-hop 
nodes: just leave a small bandwidth reserved for 

disadvantaged nodes (a small gap): 
BD≤γUmax (BD<<Umax)
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GAP
Must leave free air-time at the gateway to let

multi-hop nodes signal their demands

• Objectives
1. Ensure minimum rates that would be guaranteed under saturation 

load conditions
2. Fairly share unused resources among all competing nodes

• Constraints
1. Disadvantaged-flow Signaling Bandwidth BD≤γUmax

• Aggregate

2. Minimum Guaranteed One-hop Rate (1-γ)Umax

• Per-node (or aggregate)
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Using the GAP
• Given that

– Umax is the maximum GW utilization (constant)
– BD is reserved to multi-hop traffic (signaling or data)

• Then only multi-hop traffic can drive the GW utilization beyond 
Umax-BD

• Thus,  one-hop nodes can detect multi-hop traffic by observing a 
GW utilization exceeding Umax-BD

• E.g., each one-hop node estimates the GW utilization U(t) and uses 
AIMD to adjust its rate limiting
– AIMD based on the aggregate one-hop load U(t) and the threshold 

Umax –BD

if U(t) < Umax-BD
Increase rate limit additively

else
Decrease rate limit multiplicatively



Analytical Model

Theorem : The equilibrium points of the proposed rate control 
framework are stable

Corollary: Perturbations of the equilibrium points of the system are 
exponentially decaying with time with constant that is based on 
the equilibrium point
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Without control
Rate limiting controlled system
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A fluid simulation of the fluid model

Rules of the game
– Time is slotted
– GW can sink at most Umax units/s
– A can push to B only if B and C are 

idle (strict priority)
– Rate limiting at B and C (elastic) 
– B + C aim at not exceeding 

Umax -GAP units/s
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B

GW

Cra

rf

rb≤ rlb rc≤ rlc

– B and C estimate the load at 
each slot (with noise)

– B’s (C’s) estimate is allowed to 
exceed Umax-GAP only if B (C) 
is below its guaranteed rate

– B and C adapt their rate limit 
at the beginning of the slot

• Increase or decrease, unless 
the minimum guaranteed 
bandwidth is reached (
static default)

The rate limit rl is tuned 
via an AIMD mechanism



How much GAP?
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throughputNode B
= 

ThroughputNodeC
⇒

One-hop nodes 
attain up to 100%

25% minimum guaranteed



GAP is robust to noise
Low-pass filtered results
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Perfect estimation With noise



Is GAP better than scheduling?!

• In a distributed and low-overhead wireless scenario
– U(t) estimates are prone to uncertainty
– Distributed U(t) estimation is not synchronous
– Centralized U(t) estimation can be delivered in different time 

instants to different one-hop nodes
distributed scheduling strategies cannot converge under these 
assumptions

V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-to-End 
Performance and Fairness in Multihop Wireless Backhaul 
Networks,” in Proceedings of ACM MOBICOM, 2004

– Conversely, GAP is robust enough for a distributed 
implementation and yields fairness
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Practical issues in GAP implementation
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• Distributed (One-hop nodes)
– Local traffic estimations based on traffic overhearing
– Prone to large estimate errors

• GW-operated
– The GW counts the one-hop node traffic

• Better quality estimate
– AIMD triggered by GW commands

• One bit only is needed (increase/decrease AIMD command)
– Per-node commands

• Use  ACKs to convey commands to each one-hop node 
– Per-aggregate commands

• Use ACKs or other control messages, e.g., BEACONS to transmit 
undifferentiated commands

• One-hop good also for UDP upstream
– UDP downstream is not an issue

NO PACKET
OVERHEAD



Conclusions
• One-hop rate limiting is enough to

– Drastically reduce collisions
– Avoid multi-hop starvation
– Enable fairness
– Control network throughput

• Elastic rate limiting is needed to better use the 
available resources
– GAP protocol

• GAP performs better than scheduling
– Robust in non-ideal scenarios

• GAP is easy to implement
– In principle, just include an extra bit in the beacons
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BACKUP
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Experimental Validation

A

B

GW

RTS/CTS Enabled

Fairness can be achieved
(under different definitions)



GAP is robust to noise (1)

30

Perfect estimation With noise



GAP and fairness
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No GAP fairness with 
one-hop nodes only

GAP always fair
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GAP reaches similar or better performances
with no need of signaling message exchange 

8-branch tree

Simulation (NS2)
GAP vs. IFA 
(Inter-TAP Fairness Algorithm - scheduled access)
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