The Next Disruptive Networking Technology
Nick Maxemchuk

• Proposal Rather than Results - Heilmeier Questions

H1: What are you trying to do?
A1: Determine the network that will replace the Internet.

• Premise:

Next generation communications networks evolve incrementally.
However there are disruptive technologies that start a new progression and eventually replace the earlier technology.

Examples of Disruptive Technologies

1) The Telephone Network Replaced the Telegraph Network

• Technologies:
 Circuit Switching -- Universal connectivity
 Voice communications -- Eliminated specialized training
• Generations:
 Operator patch panels, Electromechanical switches (hat box), reed relay switches, electronic switches (ESS series), ATM (Internet type data)

2) The Internet is Replacing the Telephone Network

• Technologies:
 decentralized routing and control/packet switching -- rapid change in connections, unplanned growth and changes in topology as needed
 personal computers -- universal, instantaneous access to information
• Generations:
 Arpanet (IMPS- special hardware), Commercial/Software routers, Internet layer (stabilized the services platform, enabled commercialization), NGI

The services of the Internet can also be provided on the telephone network:
 Email - UUCP-Net, The Web - ATM switches
H2) What is the problem with the Internet?

- The Internet layer stabilized the services layer by freezing the network interface
 - New capabilities of networking technologies cannot be used, creating a pent-up demand from unused or under used networking technologies
 - Some new services are not handled well by the Internet network layer

- Examples of under utilized networking technologies:
 - DWDM and optical switching - reconfigure logical network topology
 - Broadcast/Multicast,
 - MANET's and Ad Hoc networks,
 - Intermittently connected networks,
 - Network Coding

Which new services were not handled well by the Internet?
H3: How is it done today?

- Wireless connections
 - higher error rates require changes in TCP

- Highly mobile services
 - Cell phone hand-offs are managed by the cellular network
 - Smart phones are increasing mobile data and are also reducing the cell size

- Large data transfers, for instance data collected by satellites
 - change in TCP to prevent restart
 - net flix: - replacing CATV and increasing the demand for real time transmission of movies
 - Smart phones increasing demand for mobile video

Smart Phones will have as big an effect on communications in the 2010's as personal computers had in the 1990's
The Next Disruptive Networking Technology
Variable Topology Networks

• H4: What's new in your approach and why do you think it will be successful?

 – DWDM and optical switching can reconfigure networks to provide dedicated bandwidth where and when it is needed to better support large file transfers and real time video requirements
 – Ad hoc techniques, multicast/broadcast, and network coding are intended to deal with mobility, especially on small cells, and changing topologies
 – There are new services that are needed that will be better supported on networks that respond well to changing topologies

Applications of Variable Topology Networks
H5: If you're successful, what difference will it make?

• Optimal Logical Topologies on Reliable Physical Topologies:
 DWDM and optical switching
 – Network Restoration – Japan
 – High bandwidth point-to-point data transfers – NASA, NetFlix
 – Real-time movie multicast, distance learning

• Uninterruptable Networks
 Ad hoc networking techniques
 – Social Networks - Egypt, Wisconsin

• Green Cellular Networks
 Multicast/Network Coding
 – An Alternative to Hand-offs on Micro cells
Unanswered Heilmeier Questions

- How will success be measured?
- What are the risks and the payoffs?
- How much will it cost?
- How long will it take?
- What are the midterm and final "exams" to check for success?

In order to answer the final set of questions we need to select specific pent-up technologies for changing the topology of the network and specific protocols for using the network as the topology changes.

The DARPA Fresh Start Program